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Abstract

Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental

solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral

equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are des-

cribed by a density function defined on the crack line. By solving the singular integral equations numerically, the

dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement in-

tensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs,

EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J -integral analysis in piezoelectric

bimaterals is also performed. It is found that the path-independent of J1-integral and the path-dependent of J2-integral
found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

With the extensive use of piezoelectric materials in smart devices such as sensors and actuators, the

cracking problems in such kind of materials have drawn increasing attention recently. As today, the be-

haviors of crack in homogeneous piezoelectrics subjected to combined mechanical and electric loads have

been studied sufficiently (see Deeg, 1980; McMeeking, 1990; Pak, 1990, 1992; Sosa and Pak, 1990; Sosa,

1991, 1992; Park and Sun, 1995a,b; Han and Chen, 1999). For example, Sosa (1992) reported that, for one

single crack in homogeneous piezoelectric ceramics, the stress intensity factors (SIFs) are independent of
the remote electric loading and the electric displacement intensity factor (EDIF) is independent of the

remote mechanical loading. With the aid of the total energy release rate, Pak (1992) found that an electric

field generally impeded the growth of crack. To describe the stability of a typical crack in homogeneous

piezoelectric ceramics, Park and Sun (1995a,b) further proposed a new fracture parameter, namely the
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mechanical strain energy release rate (MSERR). On the study of the similar problems in dissimilar piezo-

electric materials, Suo et al. (1992) studied interface crack problems and derived the fundamental solution

of the interface crack. Soh et al. (2000) analyzed the behavior of a bi-piezoelectric ceramic layer with in-

terfacial crack subjected to anti-plane shear and in-plane electric loading, moreover investigated the effects
of the layer thickness and the material constants of the two dissimilar materials on the fracture behavior.

But in comparison, the fracture behaviors of arbitrarily oriented crack near interface in piezoelectric

bimaterials have not been studied sufficiently.

Due to the dislocation method provides simplifications in formulation and solution, it has been suc-

cessfully applied to solve many crack problems in both elastic media (see e.g., He and Hutchinson, 1989; Lu

and Lardner, 1992; Suo and Hutchinson, 1989; Miller, 1989) and piezoelectric media (see e.g., Barnett and

Lothe, 1975; Pak, 1992; Gao et al., 1997; Fulton and Gao, 1997; Qin and Mai, 2000; Soh et al., 2000). For

elastic media, the continuously distributed dislocation described by a density function is used only to model
the crack. However, for piezoelectric media, not only the crack need to be modeled by the continuously

distributed dislocation, but also the electric potential jump across the crack is required to be simulated by

the distribution of electric potential dislocations. Following this idea, Barnett and Lothe (1975) generalized

the Stroh formalism to include the electric potential jump across the slip plane in piezoelectric materials.

Pak (1992) investigated the electroelastic fields and the energy release rate for a finite crack by modeling a

crack as the distributed dislocations and electric dipoles. Gao et al. (1997) and Fulton and Gao (1997)

investigated the effect of an electric polarization saturation strip confined in a line segment in front of a

crack. Qin and Mai (2000) studied the crack branch problems in piezoelectric bimaterial solid. However,
little effort has been made to apply this method to analyze the near interface crack problems in piezoelectric

bimaterials.

In view of above reasons, the arbitrarily oriented crack near the interface of piezoelectric bimaterials will

be studied in this paper by using the edge dislocation method. The paper is organized as follows. In Section

2, a fundamental solution for an edge dislocation near the interface of a piezoelectric bimaterial is derived.

In Section 3, the present crack problem is reduced to a system of singular integral equations by modeling

the crack using continuously distributed dislocations. In Section 4, the crack tips SIFs and EDIF as well as

MSERR are evaluated. In Section 5, the J -integral analysis is performed. In Section 6, numerical results
derived under several remote loading conditions are given.

2. Formula and solutions

2.1. Fundamental theory

It is well known that the strain c and the electric field E in piezoelectric material could be derived from

the gradients of the displacement u and the electric potential /

cij ¼ 1
2
ui;j
�

þ uj;i
�
; Ei ¼ �/;i ði; j ¼ 1; 2; 3Þ ð1Þ

and the stress rij and the electric displacement Di are related by following constitutive relations:

rij ¼ Cijrscrs � esjiEs; Di ¼ eisEs þ eirscrs ði; j; r; s ¼ 1; 2; 3Þ ð2Þ

where Cijrs represents the elastic stiffness constants, esji the piezoelectric constants and eis the dielectric

constants, respectively.

Suo et al. (1992) has found that, for a two-dimensional problem, i.e., with geometry and external loading

invariant in the direction normal to xy-plane, the elastic field and the electric field could be represented

in terms of four complex functions f1ðz1Þ, f2ðz2Þ, f3ðz3Þ, and f4ðz4Þ, each of which is holomorphic in its
argument zj ¼ xþ ljy ðj ¼ 1; 2; 3; 4Þ. Here lj are four distinct complex numbers with positive imaginary
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parts. With these holomorphic functions (or complex potentials), the general solutions for steady-state

plane piezoelectricity could be represented as

fuig ¼ 2Re
X4

j¼1

AijfjðzjÞ;

fr2ig ¼ 2Re
X4

j¼1

Lijf 0
j ðzjÞ; i ¼ 1; 2; 3; 4

fr1ig ¼ �2Re
X4

j¼1

Lijljf
0
j ðzjÞ

ð3Þ

where fuig ¼ fu1; u2; u3;/g, fr1ig ¼ fr11; r12;r13;D1g, fr2ig ¼ fr21; r22;r23;D2g. ui (i ¼ 1; 2; 3) represents the
displacements, u4 (i.e., /) the electric potential, rij the stress, and D the electric displacement. Aij and Lij are

matrices depending on material constants (Suo et al., 1992).

Introduce a vector function (Suo, 1990)

f 0ðzÞ ¼ ½f 0
1ðzÞ; f 0

2ðzÞ; f 0
3ðzÞ; f 0

4ðzÞ

T ð4Þ

where z ¼ xþ ly (Iml > 0). Once the solution of f 0ðzÞ is obtained for a given boundary value problem, the

variable z should be replaced with the argument zj when calculating field quantities from (3).

2.2. Dislocation

Consider an infinite piezoelectric bimaterial plate with materials 1 and 2 occupying the upper and lower

half planes, respectively. Assume there exists a near-interface dislocation singularity in material 2, the ðx; yÞ
is the Cartesian global coordinate system (see Fig. 1).

Following the procedure of Miller (1989) for dissimilar anisotropic elasticity, the general dislocation

solution to the piezoelectric bimaterial problem will be derived in this section. Define a new set of potentials

Wk in terms of f 0
j for the lower half plane and f 0�

j for the upper half plane such that for the lower half plane
Imfzg < 0

W1ðzÞ
W2ðzÞ
W3ðzÞ
W4ðzÞ
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Fig. 1. Edge dislocation near the interface.
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for the upper half plane Imfzg > 0

W1ðzÞ
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f 0�
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f 0�
3 ðzÞ
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4 ðzÞ
f 0
1ðzÞ
f 0
2ðzÞ
f 0
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ð6Þ

Here and throughout the paper, superscript ��� indicates the upper half plane. In Eqs. (5) and (6), the

overbar denotes complex conjugation. Now, the jump in each of the physical quantities (r2j; uj ðj ¼ 1; 2; 3Þ;
D2 and /) across the interface is given by Wþ

k ðxÞ � W�
k ðxÞ (k ¼ 1; 2; . . . ; 8).

To model dislocation, the following complex potentials corresponding to the basic singular solution for

plane piezoelectric body are considered:

f 0
j ðzÞ ¼

Bj

z� z0j
ð7Þ

in which z0j ¼ x0 þ ljy0, with x0 and y0 locating the singularity. The Bj are complex constants related to the

net force, displacement, electric displacement and electric potential jump induced by the singularity as

follows:

Im
X4

j¼1

LijBj ¼ � Xi

4p

Im
X4

j¼1

AijBj ¼ �Dui
4p

ði ¼ 1; 2; 3; 4Þ ð8Þ

The quantities X1 and X2 represent the x and y components of the net force, X3 ¼ 0, and X4 the net electric

displacement on any contour encircling the singularity, and Du1, Du2 and Du3 the displacement jumps in the

u1; u2 and u3 displacements and Du4 the electric potential jump in the / electric potential. For the case of a
pure dislocation singularity, Xi (i ¼ 1; 2; 3; 4) are taken to be zero.

Then, substitute Eq. (7) into Eqs. (5) and (6), the potentials W corresponding to the f 0
j of Eq. (7) can be

calculated directly. Provided the singularity locate in the lower half plane and f 0�
j ¼ 0, then

for the lower half plane Imfzg < 0

WkðzÞ ¼
X4

j¼1

Ckj
Bj

z� z0j
ð9Þ

for the upper half plane Imfzg > 0

WkðzÞ ¼
X4

j¼1

�Ckj
Bj

z� �zz0j
ð10Þ

where

Ckj ¼ Akj

Cðkþ4Þj ¼ Lkj
ðk; j ¼ 1; 2; 3; 4Þ ð11Þ

From Eqs. (9) and (10), it is easily found that Wþ
k ðxÞ � W�

k ðxÞ 6¼ 0, in other words, the interface condition is
not satisfied, the traction, electric displacement, displacements and electric potential are not continuous

across the interface. To satisfy the interface condition, the following additional potentials are introduced
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bWWkðzÞ ¼

X4

j¼1

�Ckj
Bj

z� �zz0j
Imfzg < 0

X4

j¼1

Ckj
Bj

z� z0j
Imfzg > 0

8>>>><>>>>: ð12Þ

Add Eqs. (9), (10) and (12) together, the sum Wk becomes

WkðzÞ ¼
X4

j¼1

Ckj
Bj

z� z0j

(
� Ckj

Bj

z� �zz0j

)
ð13Þ

Obviously, Eq. (13) has satisfied the interface condition.

Using the relations (5) and (6), the complex potentials f 0
j can be expressed in term of the Wj as follows:

for the lower half plane Imfzg < 0

f 0
j ðzÞ ¼ mjkWkðzÞ
f 0
j ðzÞ ¼ �mjkWkð�zzÞ

ðj; k ¼ 1; 2; 3; 4Þ ð14Þ

for the upper half plane Imfzg > 0

f 0�
j ðzÞ ¼ �mðjþ4ÞkWkðzÞ
f 0�
j ðzÞ ¼ mðjþ4ÞkWkð�zzÞ

ðj; k ¼ 1; 2; 3; 4Þ ð15Þ

where mjk are the components of the inverse of the matrix in Eq. (5).

Thus the potentials f 0
j modeling a dislocation singularity near piezoelectric bimaterial interface are as

follows:

f 0
j ðzÞ ¼

Bj

z� z0j
�
X8

k¼1

mjk

X4

i¼1

Cki
Bi

z� �zz0i
ð16Þ

Now, using Eqs. (3) and (16), the stress field and electric field due to the edge dislocation at near interface

point z0 can be evaluated without any difficulty

fr2ig ¼ 2Re
X4

j¼1

Lij
Bj

z� z0j

"
�
X8

k¼1

mjk

X4

i¼1

Cki
Bi

z� �zz0i

#
;

fr1ig ¼ �2Re
X4

j¼1

Lijlj
Bj

z� z0j

"
�
X8

k¼1

mjk

X4

i¼1

Cki
Bi

z� �zz0i

# ð17Þ

where fr1ig ¼ fr11;r12;r13;D1g, fr2ig ¼ fr21; r22;r23;D2g.

3. Singular integral equation

Consider an infinite piezoelectric bimaterial plate containing a near interface crack AB with orientation

angle b and length l as shown in Fig. 2. l0 is the distance between the crack tip A and intersection point of

the crack line and the interface. The crack is simulated by continuous distributed dislocations. The electric

elastic field arising from the distributed dislocations and that arising from an applied loading should satisfy

the traction-free and charge-free on crack faces. Let BjðnÞð0 < n < lÞ (j ¼ 1; 2; 3; 4) denotes the densities of
distributed dislocations along the crack line. Using the fundamental solution derived above, the following

singular integral equations are deduced
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2Re
X4

j¼1

ð�L1jlj sin
2 b þ L2j cos

2 b � L1j sin 2bÞ
Z l

0

BjðnÞdn
ðg � nÞðcos b þ lj sin bÞ

"

�
X8

k¼1

mjk

X4

i¼1

Cki

Z l

0

BiðnÞdn
ðlj � liÞy0 þ ðg � nÞ cos b þ ðglj � nliÞ sin b

#
8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ pðgÞ

2Re
X4

j¼1

ðL1jlj sin b cos b þ L2j sin b cos b þ L1j cos 2bÞ
Z l

0

BjðnÞdn
ðg � nÞðcos b þ lj sin bÞ

"

�
X8

k¼1

mjk

X4

i¼1

Cki

Z l

0

BiðnÞdn
ðlj � liÞy0 þ ðg � nÞ cos b þ ðglj � nliÞ sin b

#
8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ qðgÞ

2Re
X4

j¼1

ðL3jlj sin b þ L3j cos bÞ
Z l

0

BjðnÞdn
ðg � nÞðcos b þ lj sin bÞ

"

�
X8

k¼1

mjk

X4

i¼1

Cki

Z l

0

BiðnÞdn
ðlj � liÞy0 þ ðg � nÞ cos b þ ðglj � nliÞ sin b

#
8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ rðgÞ

2Re
X4

j¼1

ðL4jlj sin b þ L4j cos bÞ
Z l

0

BjðnÞdn
ðg � nÞðcos b þ lj sin bÞ

"

�
X8

k¼1

mjk

X4

i¼1

Cki

Z l

0

BiðnÞdn
ðlj � liÞy0 þ ðg � nÞ cos b þ ðglj � nliÞ sin b

#
8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ dðgÞ

ð18Þ

Fig. 2. A crack with two closed contours.
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where the functions pðgÞ, qðgÞ, rðgÞ are the known tractions and dðgÞ the electric displacement due to the

applied loading.

In addition, we have the conditionZ l

0

BjðnÞdn ¼ 0 ð19Þ

Then integral equation (18) can be solved numerically using the method developed by Erdogan (1978), the
functions BjðnÞ are replaced with square root singular expressions as follows:

BjðnÞ ¼
B0jðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðl� nÞ

p ð20Þ

where B0jðnÞ are the non-singular part of BjðnÞ.

4. Crack tip parameters

The SIFs and the EDIF at the crack tip n ¼ l are

KI ¼
ð2pÞ3=2ffiffi

l
p Re

X4

j¼1

�(
� L1jlj sin

2 b þ L2j cos
2 b � L1j sin 2b

� B0jðlÞ
ðcos b þ lj sin bÞ

)

KII ¼
ð2pÞ3=2ffiffi

l
p Re

X4

j¼1

L1jlj sin b cos b
�(

þ L2j sin b cos b þ L1j cos 2b
� B0jðlÞ
ðcos b þ lj sin bÞ

)

KIII ¼
ð2pÞ3=2ffiffi

l
p Re

X4

j¼1

L3jlj sin b
�(

þ L3j cos b
� B0jðlÞ
ðcos b þ lj sin bÞ

)

Ke ¼
ð2pÞ3=2ffiffi

l
p Re

X4

j¼1

L4jlj sin b
�(

þ L4j cos b
� B0jðlÞ
ðcos b þ lj sin bÞ

)
ð21Þ

with an analogous expression at the other tip. Where the subscripts I, II and III refer to the three modes of

traditional SIFs, the subscripts e denotes the EDIF.

The MSERR is

GM
I ¼ lim

d!0

1

2d

Z d

0

r22ðxÞDu2ðd � xÞdx for the mode I ð22Þ

and

GM
II ¼ lim

d!0

1

2d

Z d

0

r12ðxÞDu1ðd � xÞdx for the mode II ð23Þ

where the superscript M refers to the MSERR (Park and Sun, 1995a,b), Du1 and Du2 are the jumps of the
displacement components measured from the lower face to the upper face of the crack.

For the modes I and II, the MSERR are related with the crack tip SIFs and EDIF as follows:

GM
I ¼ 1

4
ðH21KIKII þ H22ðKIÞ2 þ H23KIKIII þ H24KIKeÞ ð24Þ

and

GM
II ¼ 1

4
ðH11ðKIIÞ2 þ H12KIKII þ H13KIIKIII þ H14KIIKeÞ ð25Þ
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where Hij (i, j ¼ 1, 2, 3, 4) is the elements of the following 4� 4 matrix H

H ¼ iAL�1 þ iAL�1 ði ¼
ffiffiffiffiffiffiffi
�1

p
Þ ð26Þ

where A and L are for the lower half plane material.

5. J-integral analysis

Consider a near interface crack with oriented angle b and the applied remote stresses and electric dis-

placement r1
yy , r

1
xy , r

1
x1, r

1
x2, D

1
2 as shown in Fig. 2. In order to perform the J -integral analysis, two kinds of

closed contours C1 and C are introduced. Here, the global system ðx; yÞ is attached to the interface, while

the local coordinate system ðx#; y#Þ is attached to the crack oriented by an angle b with respect to the x-axis
or the interface. It should be emphasized that C1 encloses the crack completely and cuts the interface at

points 1 and f, C only encloses the crack completely and does not cut the interface. For the contour C, the
J -integral in the global coordinate system (x, y) is as follows (Pak, 1990; Suo et al., 1992):

J ¼ J1 ¼
I

C

1

2
ðrijcij

�
� DiEiÞdy � nirip

oup
ox

ds� niDi
o/
ox

ds
�

ði; j; p ¼ 1; 2Þ ð27Þ

where ni is the outer normal to the contour C.
Similarly, the formulation for the second component of the Jk-vector (Budiansky and Rice, 1973) in

piezoelectric materials is

J2 ¼
I

C

�
� 1

2
ðrijcij � DiEiÞdx� nirip

oup
oy

ds� niDi
o/
oy

ds
�

ð28Þ

It should be emphasized that the J2-integral, as discussed by Herrmann and Herrmann (1981), is gene-

rally path-dependent. However, in the undermentioned manipulations, it is always assumed that the closed
contour C chosen to calculate the J2-integral encloses the crack completely. So under this assumption, the

integral is actually path-independent.

In local coordinate system (x#; y#), the J1 and J2 integrals along the contour C are

J#
1 ¼

I
C

1

2
ðr#

ijc
#
ij

�
� D#

i E
#
i Þdy# � n#i r

#
ip

ou#p
ox#

ds� n#i D
#
i

o/#

ox#
ds
�

ð29Þ

J#
2 ¼

I
C

�
� 1

2
ðr#

ijc
#
ij � D#

i E
#
i Þdx# � n#i r

#
ip

ou#p
oy#

ds� n#i D
#
i

o/#

oy#
ds
�

ð30Þ

where all quantities in Eqs. (29) and (30) are defined in the local coordinate system ðx#; y#Þ, and the

subscripts i, j and p ¼ 1, 2, 3.

Performing a transformation from system ðx; yÞ to system ðx#; y#Þ, the following formulations could be
obtained:

J1 ¼ J#
1 cos b � J#

2 sin b

J2 ¼ J#
1 sin b þ J#

2 cos b
ð31Þ

In above equations, J#
1 and J#

2 can be expressed in the following form (Suo et al., 1992):

J#
1 ¼ 1

4
ðKRÞTHKR � 1

4
ðKLÞTHKL ð32Þ
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J#
2 ¼ 1

4
ðKRÞTXHKR � 1

4
ðKLÞTXHKL þ

Z l

0

ðW þ � W �Þdx# ð33Þ

where

KR ¼ ½KR
II ;K

R
I ;K

R
III;K

R
e 


KL ¼ ½KL
II;K

L
I ;K

L
III;K

L
e 


ð34Þ

X ¼ �ReðGL�1Þ ð35Þ

Gij ¼ Lijlj ði; j ¼ 1; 2; 3; 4Þ ð36Þ

where R and L represent the right and left crack tips, W þ and W � in Eq. (33) denote the boundary values of

the mechanical and electric energy density W on the upper and lower faces, respectively.
Moreover, as shown in Fig. 2, a confusion may be concerned when using the contour C1 instead of C in

the coordinate system ðx; yÞ since the segment 1f (see Fig. 2) may induce some contribution to the integrals

(see Zhao and Chen, 1997). The following manipulations are quite necessary to clarify the confusion:

J1
1 ¼

I
C1

1

2
ðrijcij

�
� DiEiÞdy � nirip

oup
ox

ds� niDi
o/
ox

ds
�

¼
I

C

1

2
ðrijcij

�
� DiEiÞdy � nirip

oup
ox

ds� niDi
o/
ox

ds

þ
Z

1f

1

2
ðrijcij

�
:� DiEiÞ

�
dy � nirip

oup
ox

� �
ds� niDi

o/
ox

� �
ds
�

ð37Þ
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where 1f in Eqs. (37) and (38) refers to the segment of the interface from 1 to f point, the bracket [ ] denotes
the jump of the corresponding functions across the interface.

Continuous conditions of the displacement, the stresses, the electric displacement, and the electric po-

tential across the interface require that

½up
 ¼ 0; ½rp2
 ¼ 0; ½D2
 ¼ 0 and ½/
 ¼ 0; ð39Þ

which directly lead to the following conclusion as Zhao and Chen (1997) drawn in non-piezoelectric ma-
terials:

J1
1 ¼ J1 ð40Þ

Eq. (40) implies that the J1 integral is path-independent for any contour enclosing the crack in the global
coordination system despite of the contour cuts the interface or not. In addition, the applied remote

uniform stress field and the applied remote uniform electric field lead to the following conclusion (Zhao and

Chen, 1997):

J1
1 ¼ J1 ¼ 0; ð41Þ

due to that there are no other discontinuities outside of the contour.
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However, it could be found from Eqs. (38) and (39) that the J2-integral is path-independent only for a

contour enclosing the crack completely but not cutting the interface as Zhao and Chen (1997) concluded in

non-piezoelectric bimaterials. Due to the effect induced from the interface, it is not path independent any

longer when the integral contour cuts the interface.

6. Numerical results and discussion

Consider a special material combination PZT-5H/PZT-5. Let PZT-5H occupy the upper half-plane,
PZT-5 the lower half-plane, respectively. Material constants of the two materials are listed in Table 1.

Assume the poling directions of both materials be perpendicular to the interface (the x-axis) (see Fig. 2) and
the plane strain condition be satisfied.

First, the accuracy of the proposed numerical scheme is verified by comparing with the numerical results

for a near interface crack in an ideal elastic bimaterials. Zhao and Chen (1997) investigated a subinterface

crack in bimaterials Cu/Al2O3. Consider a fictitious piezoelectric bimaterials with the same elastic constants

as Cu/Al2O3 identical dielectric constants as PZT-5H in upper half-plane and PZT-5 in lower half-plane,

and negligible piezoelectric constants. Here, necessary to note that, a small perturbation of the material
constants is employed to obtain distinct eigenvalues in calculation. The remote stress field and the electric

field are r1
yy ¼ r1

x2 ¼ r, r1
xy ¼ 0, r1

x1 6¼ 0 and D1
2 ¼ 0. The ratio of KII=KI against the orientation angle b is

shown in Fig. 3. Note that these results agree well with those obtained by Zhao and Chen (1997).

In the following, a crack near interface of piezoelectric bimaterials PZT-5H/PZT-5 is investigated.

The crack tip SIFs, EDIF and MSERR are evaluated for various geometry and the remote combined

mechanical–electric loadings. Necessary to note that, in following calculations, identical mechanical

loading is considered, i.e. r1
yy ¼ r1

x2 ¼ 4� 106 N/m2, r1
xy ¼ 0 and r1

x1 6¼ 0. Take b ¼ 30� and 45�, the nor-

malized Mode I SIF KI=K0 (K0 ¼
ffiffiffiffiffiffiffiffiffiffi
pl=2

p
=r1

yy ) at crack tip A is illustrated in Fig. 4(a) and (b) as a function of
the normalized distance l0=l for different remote electric displacement loading D1

2 .

From Fig. 4, an apparent asymptotic nature of KI=K0 is found irrespective of loading condition. With

increasing l0=l, the value of KI=K0 approaches to 1. Indeed, as could be imagined, the increasing l0=l always
results in a decreasing influence of electric loading on Mode I SIF so that the five curves in each figure

almost coincide with each other when l0=l is large enough. However, when the crack is located near the

interface (e.g. l0=l < 0:5), the electric loading disturbs the value of KI=K0 significantly so that the five curves

diverge far from each other. This means that the remote electric loading takes a great effect on the stability

of the crack near the interface in piezoelectric bimaterials. Of the great interest is that a transforming
distance, namely the neutral electric loading distance (NELD) l0NE, is found from curves of KI=K0, at which

Table 1

Material constants of the PZT-5H and PZT-5

C11 C12 C13 C33 C44

PZT-5H 126 55 53 117 35.3 (GPa)

PZT-5 121 74.5 75.2 111 21.1

e31 e33 e15

PZT-5H �6.5 23.3 17 (C/m2)

PZT-5 �5.4 15.8 12.3

e11 e33

PZT-5H 151 130 � 10�10 C/Vm

PZT-5 81.7 73.46
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neither positive nor negative electric loading has influence on KI=K0. When l0 < l0NE, the positive electric

loading always leads to increasing KI=K0, while the negative electric loading decreasing KI=K0. However, an
opposite influence of electric loading on KI=K0 is found when l0 > l0NE, i.e. the positive electric loading

always leads to decreasing KI=K0, while the negative electric loading increasing KI=K0. The l0NE is equal to

about 0.136l for b ¼ 30� and about 0.107l for b ¼ 45�. It is also seen from the figures that, except l0 ¼ l0NE,

the influence of electric loading on KI=K0 always increase along with the increase of its magnitude. In

addition, the Fig. 4 shows that all values of KI=K0 are smaller than 1, this means that the interface between

PZT-5H and PZT-5 has a shielding effect on the crack in PZT-5.

The variation tendency of Mode II SIF KII=K0 against l0=l at crack tip A is plotted in Fig. 5(a) and (b).

Similarly, an apparent asymptotic nature of KII=K0 is also found from Fig. 5, i.e. the value of KII=K0 tends
to be 0 with increasing l0=l. Moreover, a NELD l0NE is found too, at which neither the positive nor the

negative electric loading has influence on KII=K0. However, the values of the NELD for the Mode II SIF

KII=K0 do not coincide with those shown in Fig. 4 for the Mode I SIF KI=K0. They are about 0.26l for

b ¼ 30� and 0.065l for b ¼ 45�. What�s more, opposite to the effect of electric loading on KI=K0, when

l0 < l0NE, the positive electric loading leads to decreasing KII=K0, while the negative electric loading

Fig. 3. The ratio of KII=KI vs. the angle b.

Fig. 4. KI=K0 against l0=l: (a) b ¼ 30�, (b) b ¼ 45�.
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increasing KII=K0. However when l0 > l0NE, the positive electric loading always leads to increasing KII=K0,

while the negative electric loading decreasing KII=K0.

The EDIFs Ke=ðpl=2Þ1=2 at tip A against l0=l are plotted in Fig. 6(a) and (b) for b ¼ 30� and 45�, res-
pectively. It is found that the positive and negative electric loadings play just opposite roles on EDIF, i.e.,
the positive electric loading always increases the EDIF, while the negative electric loading always decreases

it. It is also seen that, when l0=l > 1:5, the influence of l0=l on the EDIF becomes so small that could be

neglected completely. But its influence tends to be larger and larger with decreasing l0=l . In addition,

whatever the remote electric loading is positive or negative, its increase in magnitude always results in the

increasing magnitude of EDIF irrespective of the distance l0=l.
As Park and Sun (1995a,b) pointed out that the MSERR is more suitable to describe the stability and

growth of crack in piezoelectric ceramics than the SIF, this parameter should be paid much attention in the

present problem. Computed values of the Mode I MSERR GM
I at crack tip A against l0=l are plotted in Fig.

7(a) and (b) respectively for b ¼ 30� and 45�. Here or henceforth, the MSERR is normalized by GM1
I which

represents the value of the MSERR for the parallel crack in homogeneous piezoelectric material PZT-5

under pure mechanical loading. It is seen that, similar as found by Park and Sun (1995a,b) for homo-

geneous piezoelectric solid, the positive electric loading always leads to increasing MSERR and the negative

electric loading decreasing it. This indicates that the positive electric loading always promotes the extension

Fig. 5. KII=K0 against l0=l: (a) b ¼ 30�, (b) b ¼ 45�.

Fig. 6. Ke=
ffiffiffiffiffiffiffiffiffiffi
pl=2

p
against l0=l: (a) b ¼ 30�, (b) b ¼ 45�.
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of the crack, while the negative electric loading always impedes the extension of the crack. Additionally, in

nearly whole range of l0=l, the value of GM
I =G

M1
I increases with increasing l0=l and tends to be a constant

value when l0=l is large enough. This confirms again that the interface between PZT-5H and PZT-5 actually

has a shielding effect on the crack in PZT-5.

Fig. 8(a) and (b) show the results of the normalized J1=J0 and J2=J0 versus l0=l, where

J0 ¼
1

4
K1THK1 K1 ¼

ffiffiffiffiffiffiffiffiffiffi
pl=2

p
½r1

xy ; r
1
yy ; 0;D

1
2 
 ð42Þ

It can be found that the J1-integral vanishes as predicted by Eq. (41), this indicates that the path-inde-

pendent property of the J1-integral found in non-piezoelectric bimaterials (Zhao and Chen, 1997) is still

valid in piezoelectric bimaterials. However, due to the effect induced from the interface, the J2-integral does
not vanish, and generally speaking, a large influence of the interface on J2-integral occurs when the distance

l0=l is decreased.
Let l0=l ¼ 0:25 and 1.0, the values of MSERR against the orientation angle b are illustrated in Fig. 9(a)

and (b), respectively. It is found that when b ¼ 90�, i.e. the crack is perpendicular to the interface, whatever

the positive or the negative electric loading takes no effect on the MSERR. Except this special location of

the crack, the positive electric loading always increases the MSERR, while the negative electric loading

always decreases it. This confirms for another time that, in most range of b, the positive electric loading

Fig. 7. GM
I =G

M1
I against l0=l: (a) b ¼ 30�, (b) b ¼ 45�.

Fig. 8. J1=J0 and J2=J0 against l0=l: (a) b ¼ 30�, (b) b ¼ 45�.
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really promotes the extension of the crack, while the negative electric loading impedes it. It is also found

that, with the increasing diversion of b from 90�, the disturbance of the electric loading on the MSERR
tends to be strong, so that five curves diverge farther and farther from each other.

Fig. 10 shows the variation of the MSERR at crack tip A for several values of b as a function of the

remote electric loading D1
2 . It is found that the variation tendencies of the MSERR against the electric

loading are linear and the line slope increases with decreasing b. This fully proves that the influence of the

electric loading on the MSERR tends to increase when the crack approaches to the interface.

7. Conclusions

From above investigations and discussions, the following conclusions can be obtained:

(1) The proposed dislocation method is actually effective for solving the near interface crack problem in

piezoelectric bimaterials.

Fig. 9. GM
I =G

M1
I against the angle b: (a) l0 ¼ 0:25l, (b) l0 ¼ l.

Fig. 10. GM
I =G

M1
I against the electric displacement D1

2 .
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(2) The remote electric loading takes a great effect on the stability of the near interface crack in piezoelec-

tric bimaterials. Moreover, its influence tends to increase when the crack approaches to the interface.

(3) In the combination of PZT-5H/PZT-5, the interface between PZT-5H and PZT-5 always has a shielding

effect on the crack in PZT-5.
(4) The positive and negative electric loadings play opposite roles on the EDIF, i.e., the positive electric

loading always increases the EDIF, while the negative electric loading always decreases it. Moreover,

whatever the remote electric loading is positive or negative, its increasing value always leads to the in-

crease of EDIF in magnitude.

(5) Generally speaking, the positive electric loading leads to increasing the MSERR and the negative elec-

tric loading decreasing it. This indicates that the positive electric loading generally promotes the exten-

sion of the crack, while the negative electric loading generally impedes the extension of the crack.

(6) The MSERR changes linearly with the variation of the remote electric displacement loading. Moreover,
the MSERR tends to be more sensitive to the modification of electric displacement loading with the

decreasing orientation angle of the crack. It can be predicted that, when the poling direction is perpen-

dicular to the interface, the remote electric displacement loading will bring the largest influence on the

MSERR for a parallel near interface crack, while bring a least influence on the MSERR for a perpen-

dicular one.

(7) The J1-integral is still path independent in piezoelectric bimaterials though both the stress and electric

fields are taken into account.
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