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Abstract

Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental
solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral
equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are des-
cribed by a density function defined on the crack line. By solving the singular integral equations numerically, the
dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement in-
tensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs,
EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J-integral analysis in piezoelectric
bimaterals is also performed. It is found that the path-independent of J;-integral and the path-dependent of J,-integral
found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

With the extensive use of piezoelectric materials in smart devices such as sensors and actuators, the
cracking problems in such kind of materials have drawn increasing attention recently. As today, the be-
haviors of crack in homogeneous piezoelectrics subjected to combined mechanical and electric loads have
been studied sufficiently (see Deeg, 1980; McMeeking, 1990; Pak, 1990, 1992; Sosa and Pak, 1990; Sosa,
1991, 1992; Park and Sun, 1995a,b; Han and Chen, 1999). For example, Sosa (1992) reported that, for one
single crack in homogeneous piezoelectric ceramics, the stress intensity factors (SIFs) are independent of
the remote electric loading and the electric displacement intensity factor (EDIF) is independent of the
remote mechanical loading. With the aid of the total energy release rate, Pak (1992) found that an electric
field generally impeded the growth of crack. To describe the stability of a typical crack in homogeneous
piezoelectric ceramics, Park and Sun (1995a,b) further proposed a new fracture parameter, namely the
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mechanical strain energy release rate (MSERR). On the study of the similar problems in dissimilar piezo-
electric materials, Suo et al. (1992) studied interface crack problems and derived the fundamental solution
of the interface crack. Soh et al. (2000) analyzed the behavior of a bi-piezoelectric ceramic layer with in-
terfacial crack subjected to anti-plane shear and in-plane electric loading, moreover investigated the effects
of the layer thickness and the material constants of the two dissimilar materials on the fracture behavior.
But in comparison, the fracture behaviors of arbitrarily oriented crack near interface in piezoelectric
bimaterials have not been studied sufficiently.

Due to the dislocation method provides simplifications in formulation and solution, it has been suc-
cessfully applied to solve many crack problems in both elastic media (see e.g., He and Hutchinson, 1989; Lu
and Lardner, 1992; Suo and Hutchinson, 1989; Miller, 1989) and piezoelectric media (see e.g., Barnett and
Lothe, 1975; Pak, 1992; Gao et al., 1997; Fulton and Gao, 1997; Qin and Mai, 2000; Soh et al., 2000). For
elastic media, the continuously distributed dislocation described by a density function is used only to model
the crack. However, for piezoelectric media, not only the crack need to be modeled by the continuously
distributed dislocation, but also the electric potential jump across the crack is required to be simulated by
the distribution of electric potential dislocations. Following this idea, Barnett and Lothe (1975) generalized
the Stroh formalism to include the electric potential jump across the slip plane in piezoelectric materials.
Pak (1992) investigated the electroelastic fields and the energy release rate for a finite crack by modeling a
crack as the distributed dislocations and electric dipoles. Gao et al. (1997) and Fulton and Gao (1997)
investigated the effect of an electric polarization saturation strip confined in a line segment in front of a
crack. Qin and Mai (2000) studied the crack branch problems in piezoelectric bimaterial solid. However,
little effort has been made to apply this method to analyze the near interface crack problems in piezoelectric
bimaterials.

In view of above reasons, the arbitrarily oriented crack near the interface of piezoelectric bimaterials will
be studied in this paper by using the edge dislocation method. The paper is organized as follows. In Section
2, a fundamental solution for an edge dislocation near the interface of a piezoelectric bimaterial is derived.
In Section 3, the present crack problem is reduced to a system of singular integral equations by modeling
the crack using continuously distributed dislocations. In Section 4, the crack tips SIFs and EDIF as well as
MSERR are evaluated. In Section 5, the J-integral analysis is performed. In Section 6, numerical results
derived under several remote loading conditions are given.

2. Formula and solutions

2.1. Fundamental theory

It is well known that the strain y and the electric field E in piezoelectric material could be derived from
the gradients of the displacement u and the electric potential ¢

vy =5y +w), Ei=—¢,  (,j=1,2,3) (1)
and the stress ¢;; and the electric displacement D; are related by following constitutive relations:
0ij = CijnVy — €5jilty,  Di = &iEy + €y, (i,j, r.s=1,2, 3) (2)

where Cj;, represents the elastic stiffness constants, e; the piezoelectric constants and ¢; the dielectric
constants, respectively.

Suo et al. (1992) has found that, for a two-dimensional problem, i.e., with geometry and external loading
invariant in the direction normal to xy-plane, the elastic field and the electric field could be represented
in terms of four complex functions fi(z;), f>(z2), f3(z3), and f4(z4), each of which is holomorphic in its
argument z; =x + wy (j = 1,2,3,4). Here y; are four distinct complex numbers with positive imaginary
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parts. With these holomorphic functions (or complex potentials), the general solutions for steady-state
plane piezoelectricity could be represented as

4
{u} = 2Re > 4,fi(z),
J=1
4
{ou} =2Re> Lyfl(z), i=12734 (3)
J=1

4
{ou} = —2Re > Ly f(z)
=
where {u;} = {uy,uz,u3, ¢}, {01} = {011,012,013,D1}, {02} = {021,02,003,D>}. u; (i = 1,2,3) represents the
displacements, u4 (i.e., ¢) the electric potential, o;; the stress, and D the electric displacement. 4;; and L;; are
matrices depending on material constants (Suo et al., 1992).
Introduce a vector function (Suo, 1990)

12 =1@). ). £ fiE)]" (4)

where z = x + py (Im p > 0). Once the solution of f”(z) is obtained for a given boundary value problem, the
variable z should be replaced with the argument z; when calculating field quantities from (3).

2.2. Dislocation

Consider an infinite piezoelectric bimaterial plate with materials 1 and 2 occupying the upper and lower
half planes, respectively. Assume there exists a near-interface dislocation singularity in material 2, the (x, y)
is the Cartesian global coordinate system (see Fig. 1).

Following the procedure of Miller (1989) for dissimilar anisotropic elasticity, the general dislocation
solution to the piezoelectric bimaterial problem will be derived in this section. Define a new set of potentials
¥ in terms of f] for the lower half plane and f;* for the upper half plane such that for the lower half plane
Im{z} <0

[Pi(2)] (A A A A 4 43, —/E A, || fi2)
¥(z) Ay Ay Ay Au —A5 —A5, —A5, —A5, || f2(2)
?5(z) Ay An An A Ay Ay, Ay A || fi2)
P4(2) _ | An Ax Ap Aw —Ay —Anp —An —Ay fi(2) (5)
¥s(z) Ly Ly Ls Ls -Lj, -Lj, -Lj; -Lj,||/fi(2)
¥s(z) Ly Ly Ly Lu —Ly —Ly —Ly —Ly||/f(2)
¥4(2) Ly Ly Ly Ly —Ly, —-Ly, —-Ly, —Li,||/fi(2)

| Ps(2) | | Lyt Lap Laz Lay —Ly —Ly —Li; —Lj, | i 2(2) |

y
Material 1
X
Materia 2 I
(%ye)

Fig. 1. Edge dislocation near the interface.
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for the upper half plane Im{z} > 0

¥ (z) (A Ay, Ay A _‘E _E _E _E 1'(2)
Va(e) | Ay Ay Ay Ay —Au —Ap —An —Aw | | f(9)
Vi) | Ay An An Ay An —An —An A | | f7()
¥4(z) _ A A A Ay —Ada —An —Ads —Au i (2) (6)
Vs (z) Ly Ly Ly Ly —Lu Lo L —Lu fi(2)
P (z) Ly Ly Ly Ly —Lan —Ln —Ly —Lxn L)
¥5(2) Ly Ly, Ly Ly Ly Ly Ly —Lu L)
[Ps(2) ] [y Ly L Ly —Lu Lo —Ls —Lul|fi(®

Here and throughout the paper, superscript “«’ indicates the upper half plane. In Egs. (5) and (6), the
overbar denotes complex conjugation. Now, the jump in each of the physical quantities (a2, u; (j = 1,2, 3),
D, and ¢) across the interface is given by ¥/ (x) — ¥, (x) (k=1,2,...,8).

To model dislocation, the following complex potentials corresponding to the basic singular solution for
plane piezoelectric body are considered:

£ =2 )

h Z — 2y
in which zg; = xo + 1;, with x and y;, locating the singularity. The B; are complex constants related to the

net force, displacement, electric displacement and electric potential jump induced by the singularity as
follows:

4
X
; 4

Im 24:/1 B Au;
ijbj = —
= 4m

The quantities X; and X, represent the x and y components of the net force, X3 = 0, and X; the net electric
displacement on any contour encircling the singularity, and Au, Au, and Aus the displacement jumps in the
uy, u, and u; displacements and Auy the electric potential jump in the ¢ electric potential. For the case of a
pure dislocation singularity, X; (i = 1,2, 3,4) are taken to be zero.

Then, substitute Eq. (7) into Egs. (5) and (6), the potentials ¥ corresponding to the f; of Eq. (7) can be
calculated directly. Provided the singularity locate in the lower half plane and f;* = 0, then

(i=1,2,3,4) (8)

for the lower half plane Im{z} < 0

4 B]
qu(Z) = Z ij

& (9)
= z Z()j
for the upper half plane Im{z} > 0
4 E
Y.(z) = —C, — 10
k( ) ; kj z_ 2()]' ( )
where
Gy = Ay, .
k,j=1,2,3,4 11
L (k=123 (1

From Egs. (9) and (10), it is easily found that ¥} (x) — ¥} (x) # 0, in other words, the interface condition is
not satisfied, the traction, electric displacement, displacements and electric potential are not continuous
across the interface. To satisfy the interface condition, the following additional potentials are introduced
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lPk(Z) = J

Im{z} >0
Add Egs. (9), (10) and (12) together, the sum ¥, becomes

A _
_ B;
z:{cka_z sz—zo_,} (13)

J=1

Obviously, Eq. (13) has satisfied the interface condition.
Using the relations (5) and (6), the complex potentials f ' can be expressed in term of the ¥; as follows:

for the lower half plane Im{z} < 0
1i(2) = mu¥i(2)
1i(2) = —mp¥i(2)

for the upper half plane Im{z} > 0
17(2) =~ ()

(2) = map i (2)

where mj, are the components of the inverse of the matrix in Eq. (5).

Thus the potentials fj’ modeling a dislocation singularity near piezoelectric bimaterial interface are as
follows:

f}-/ Z—Z()j Zm/kZCklz—Z(]l (16)

Now, using Egs. (3) and (16), the stress field and electric field due to the edge dislocation at near interface
point z, can be evaluated without any difficulty

. B
{O-Zi} = 2Re ZL,'/' lz —

(jik=1,2,3,4) (14)

Gk =1,2,3,4) (15)

8 4 )
) c. B
- mjk ki -
Zo; Z — Zo;

)j = i=1

8

4 - Fi
Z ;Ckl-z_zm

20j k=

(17)
{o1:} = —2ReZL,j,ujl 1

where {01} = {011,012,013,D1}, {02} = {021,02,023,D,}.

3. Singular integral equation

Consider an infinite piezoelectric bimaterial plate containing a near interface crack 4B with orientation
angle f and length / as shown in Fig. 2. I is the distance between the crack tip 4 and intersection point of
the crack line and the interface. The crack is simulated by continuous distributed dislocations. The electric
elastic field arising from the distributed dislocations and that arising from an applied loading should satisfy
the traction-free and charge-free on crack faces. Let B;(£)(0 < € < 1) (j = 1,2,3,4) denotes the densities of
distributed dislocations along the crack line. Using the fundamental solution derived above, the following
singular integral equations are deduced
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Fig. 2. A crack with two closed contours.

L sin? oS B — Li-si ’ B,(§)d¢
( Ll_/:uj sin” f§ + LZ_/ cos” f§ Ll_/ Sm 2ﬂ) [/O (11 — f)(COS ﬁ n n sin ,8)
SN l Bi(§)d¢ -
- ;mﬂ‘ — Cki/o (1 — Ty + (n — &) cos B+ (nu; — &) sinﬁ}
) . ! B;(&)d¢
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B ;mjk z:l: Cki/o (ﬂj —H)yo + (1 — &) cos f+ (’7,“]‘ —&ny) Sinﬁ]
o | ! B,(&)d¢
(Lt Sin f + Ly cos ) [/ (1= O)(cos i+ u,5in )
8 4 ! F(é) dé - r(’/’)
- kz:;mjk 2:1: Cki/o (,“j — 1)y + (n—¢&)cos B+ (”IH;‘ — ) Sinﬂ‘|
- : B;()d¢
(Lajpt; sin B + Ly cos f3) [/0 (n —&)(cos B+ p;sin B) i)
=a\n
s [ Bi&)de
;m’k ; Cu /o (1 — T)yo + (n — &) cos B+ (nu, — &1y sinﬁ]
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where the functions p(n), g(n), r() are the known tractions and d() the electric displacement due to the
applied loading.
In addition, we have the condition

Then integral equation (18) can be solved numerically using the method developed by Erdogan (1978), the
functions B;(&) are replaced with square root singular expressions as follows:

o Bo()
B;(¢) ) (20)

where By;(£) are the non-singular part of B;(&).

4. Crack tip parameters

The SIFs and the EDIF at the crack tip & = [ are

K = (23;/2 Rejz:: { (= Ly, sin® B+ Ly cos® f — Ly sin 2f) (cosff(éjmm }
Ky = (23;/2 Reji: { (Lyjp;sin B cos B+ Ly; sin fcos B+ Li; cos 2f) % }

21
Ko QT/);/Z Re_,il (Lysysin f+ Ly cos B) %} (21)
K, = %Rei {(L4,uj sin 8 + Lyj cos ff) % }

with an analogous expression at the other tip. Where the subscripts I, IT and III refer to the three modes of
traditional SIFs, the subscripts e denotes the EDIF.
The MSERR is

1 0
G = lim — / 022 (x)Auy (8 — x)dx  for the mode I (22)
0—0 25 0
and
1 0
GN = lim % / c12(x)Au; (8 — x)dx  for the mode II (23)
- 0

where the superscript M refers to the MSERR (Park and Sun, 1995a,b), Au; and Au, are the jumps of the
displacement components measured from the lower face to the upper face of the crack.
For the modes I and II, the MSERR are related with the crack tip SIFs and EDIF as follows:

G = {(HyKiKy + Ha(Ky)” + HosKiKin + HauKiK.) (24)
and

Gﬁ“ = i(Hll (Kll)2 + H KKy + His KKy + HiaKnKe) (25)
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where H;; (i, j =1, 2, 3, 4) is the elements of the following 4 x 4 matrix H
H=iAL"' +iAL™"" (i=V-1) (26)

where A and L are for the lower half plane material.

5. J-integral analysis

Consider a near interface crack with oriented angle § and the applied remote stresses and electric dis-
placement o7, 677, 67}, 035, D5 as shown in Fig. 2. In order to perform the J-integral analysis, two kinds of
closed contours I' and I' are introduced. Here, the global system (x,y) is attached to the interface, while
the local coordinate system (x*, %) is attached to the crack oriented by an angle  with respect to the x-axis
or the interface. It should be emphasized that I'™ encloses the crack completely and cuts the interface at
points ¢ and {, I" only encloses the crack completely and does not cut the interface. For the contour I', the

J-integral in the global coordinate system (x, y) is as follows (Pak, 1990; Suo et al., 1992):
1 Ou 0o
J=J ]g{z(a,,y,j Ei)dy — nioy, o ds —n; A ds} (i,j,p ,2) (27)

where n; is the outer normal to the contour I'.
Similarly, the formulation for the second component of the J;-vector (Budiansky and Rice, 1973) in
piezoelectric materials is

1 Ou, aq;
Js jg{ 2((’7/% D.E;)dx — n;o;, — e 2 ds — 6y } (28)

It should be emphasized that the J,-integral, as discussed by Herrmann and Herrmann (1981), is gene-
rally path-dependent. However, in the undermentioned manipulations, it is always assumed that the closed
contour I' chosen to calculate the J,-integral encloses the crack completely. So under this assumption, the
integral is actually path-independent.

In local coordinate system (x*, %), the J; and J, integrals along the contour I' are

1 ou* o9*
# _ #, # # # # # _# # n#
Ji = 7{ {z(oijyij_Di ENdy" —n} al.pax—’; ds — n?'D; e ds} (29)
1 « uy 0g"
i=4 { - 3~ DI &* ol s — D S ds} (30)
a A

where all quantities in Egs. (29) and (30) are defined in the local coordinate system (x*,)#), and the
subscripts i, j and p =1, 2, 3.

Performing a transformation from system (x,y) to system (x*,1#), the following formulations could be
obtained:

Jy = Jf cos B —JF sin

31
Jy = J sin B+ J¥ cos G
In above equations, J* and J¥ can be expressed in the following form (Suo et al., 1992):
JE = % (K?)"THK® — %(KL)THKL (32)
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!
%(KR) XHKR —%(KL)TXHKL +/0 (W —w)dx* (33)
where

K® = KR KR KR KR
[ I II1 ] (34)

K" = [K; K5 Kl KLY
X = —Re(GL™) (35)
Gij = Lij,u/ (laJ = 17 27 374) (36)

where R and L represent the right and left crack tips, W' and W~ in Eq. (33) denote the boundary values of
the mechanical and electric energy density # on the upper and lower faces, respectively.

Moreover, as shown in Fig. 2, a confusion may be concerned when using the contour I'™ instead of I in
the coordinate system (x, y) since the segment ¢( (see Fig. 2) may induce some contribution to the integrals
(see Zhao and Chen, 1997). The following manipulations are quite necessary to clarify the confusion:

1 Ou ¢
00— (g:v.. — D.E. —no. —2 ds — n.D, —=
J; 74% {2(011/11 E;)dy — no, o ds — n; A ds}

1 Ou ¢
= (g:v.. — D.E. —no. —2 ds — n.D: —
75{2(6,1/,_/ .Ei)dy — nioy, o ds — n o ds

1 Ou 0o

+ /I [E(oy-jyij. — D,-E,-)] dy — nioy, {a—;]ds —n;D {Gx] } (37)
. ! o, 3
JX = ?ix { Z(Uijy[j DE;)dx — nio; — 3 ds — '6y ds}
1 Ou Rl
= — (g:v.. — D.E o e g D, ——
jé{ 2(0,_,)21/ E;)dx — nio, 3 ds —n; B ds

1 Ou, 0o

+ [7 |:26[j/ijDiE,':|dxniG[p|:ay:| dS*]’l,'D |:ay:|ds} (38)

where ¢ in Egs. (37) and (38) refers to the segment of the interface from ¢ to { point, the bracket [ ] denotes
the jump of the corresponding functions across the interface.

Continuous conditions of the displacement, the stresses, the electric displacement, and the electric po-
tential across the interface require that

u) =0, [o2)=0, [D:)=0 and [¢] =0, (39)

which directly lead to the following conclusion as Zhao and Chen (1997) drawn in non-piezoelectric ma-
terials:

Jx = (40)

Eq. (40) implies that the J; integral is path-independent for any contour enclosing the crack in the global
coordination system despite of the contour cuts the interface or not. In addition, the applied remote
uniform stress field and the applied remote uniform electric field lead to the following conclusion (Zhao and
Chen, 1997):

JX¥=J, =0, (41)

due to that there are no other discontinuities outside of the contour.
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However, it could be found from Egs. (38) and (39) that the J,-integral is path-independent only for a
contour enclosing the crack completely but not cutting the interface as Zhao and Chen (1997) concluded in
non-piezoelectric bimaterials. Due to the effect induced from the interface, it is not path independent any
longer when the integral contour cuts the interface.

6. Numerical results and discussion

Consider a special material combination PZT-5SH/PZT-5. Let PZT-5H occupy the upper half-plane,
PZT-5 the lower half-plane, respectively. Material constants of the two materials are listed in Table 1.
Assume the poling directions of both materials be perpendicular to the interface (the x-axis) (see Fig. 2) and
the plane strain condition be satisfied.

First, the accuracy of the proposed numerical scheme is verified by comparing with the numerical results
for a near interface crack in an ideal elastic bimaterials. Zhao and Chen (1997) investigated a subinterface
crack in bimaterials Cu/Al,O;. Consider a fictitious piezoelectric bimaterials with the same elastic constants
as Cu/Al,O; identical dielectric constants as PZT-5H in upper half-plane and PZT-5 in lower half-plane,
and negligible piezoelectric constants. Here, necessary to note that, a small perturbation of the material
constants is employed to obtain distinct eigenvalues in calculation. The remote stress field and the electric
field are o}y = 03 = 0, 03y = 0, a3} # 0 and D5 = 0. The ratio of Kyi/K; against the orientation angle f8 is
shown in Flg 3. Note that these results agree well with those obtained by Zhao and Chen (1997).

In the following, a crack near interface of piezoelectric bimaterials PZT-5SH/PZT-5 is investigated.
The crack tip SIFs, EDIF and MSERR are evaluated for various geometry and the remote combined
mechanical-electric loadings. Necessary to note that, in following calculations, identical mechanical
loading is considered, i.e. o}y = g5 = 4 x 10° N/m?, o3y = 0 and o} # 0. Take f = 30° and 45°, the nor-
malized Mode I SIF K; /K, (Ko = \/nl/2/ o) at crack tlp Alis 1llustrated in Fig. 4(a) and (b) as a function of
the normalized distance /'// for different remote electric displacement loading D5°.

From Fig. 4, an apparent asymptotic nature of K;/K, is found irrespective of loading condition. With
increasing /'/1, the value of Kj/K, approaches to 1. Indeed, as could be imagined, the increasing [/ always
results in a decreasing influence of electric loading on Mode I SIF so that the five curves in each figure
almost coincide with each other when /I is large enough. However, when the crack is located near the
interface (e.g. I'// < 0.5), the electric loading disturbs the value of K; /K| significantly so that the five curves
diverge far from each other. This means that the remote electric loading takes a great effect on the stability
of the crack near the interface in piezoelectric bimaterials. Of the great interest is that a transforming
distance, namely the neutral electric loading distance (NELD) /|, is found from curves of K;/Kj, at which

Table 1
Material constants of the PZT-5H and PZT-5
Ch Cn Cis Cy; (oM
PZT-5H 126 55 53 117 35.3 (GPa)
PZT-5 121 74.5 75.2 111 21.1
€3] €33 €1s
PZT-5H —6.5 23.3 17 (C/m?)
PZT-5 -54 15.8 12.3
én €33
PZT-5H 151 130 x 10719 C/Vm

PZT-5 81.7 73.46
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Fig. 4. Ki1/K, against I'/1: (a) = 30°, (b) p =45°.

neither positive nor negative electric loading has influence on Kj/Ky. When /' < I}, the positive electric
loading always leads to increasing K; /K, while the negative electric loading decreasing K;/K,. However, an
opposite influence of electric loading on K;/K, is found when /" > I{, i.e. the positive electric loading
always leads to decreasing K;/Kj, while the negative electric loading increasing K;/Kjy. The I} is equal to
about 0.136/ for f = 30° and about 0.107/ for § = 45°. It is also seen from the figures that, except I' = I\,
the influence of electric loading on K;/K, always increase along with the increase of its magnitude. In
addition, the Fig. 4 shows that all values of Kj/K, are smaller than 1, this means that the interface between
PZT-5H and PZT-5 has a shielding effect on the crack in PZT-5.

The variation tendency of Mode II SIF Ky /K against /] at crack tip 4 is plotted in Fig. 5(a) and (b).
Similarly, an apparent asymptotic nature of Ky /K, is also found from Fig. 5, i.e. the value of Kj;/K, tends
to be 0 with increasing ///. Moreover, a NELD /4, is found too, at which neither the positive nor the
negative electric loading has influence on Kj;/Ky. However, the values of the NELD for the Mode II SIF
Ki1/Ko do not coincide with those shown in Fig. 4 for the Mode I SIF K;/K,. They are about 0.26/ for
f =30° and 0.065/ for f§ = 45°. What’s more, opposite to the effect of electric loading on Kj/Kj,, when

I' < I, the positive electric loading leads to decreasing Kii/K,, while the negative electric loading
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Fig. 6. K./\/7l/2 against I'/I: (a) f = 30°, (b) = 45°.

increasing Ky/Ky. However when /" > I, the positive electric loading always leads to increasing K1 /Ko,
while the negative electric loading decreasing Kj;/Ko.

The EDIFs Ke/(rcl/2)1/2 at tip 4 against I'/] are plotted in Fig. 6(a) and (b) for f = 30° and 45°, res-
pectively. It is found that the positive and negative electric loadings play just opposite roles on EDIF, i.e.,
the positive electric loading always increases the EDIF, while the negative electric loading always decreases
it. It is also seen that, when /1 > 1.5, the influence of /// on the EDIF becomes so small that could be
neglected completely. But its influence tends to be larger and larger with decreasing //// . In addition,
whatever the remote electric loading is positive or negative, its increase in magnitude always results in the
increasing magnitude of EDIF irrespective of the distance /'/1.

As Park and Sun (1995a,b) pointed out that the MSERR is more suitable to describe the stability and
growth of crack in piezoelectric ceramics than the SIF, this parameter should be paid much attention in the
present problem. Computed values of the Mode I MSERR GM at crack tip 4 against /'// are plotted in Fig.
7(a) and (b) respectively for f = 30° and 45°. Here or henceforth, the MSERR is normalized by GM> which
represents the value of the MSERR for the parallel crack in homogeneous piezoelectric material PZT-5
under pure mechanical loading. It is seen that, similar as found by Park and Sun (1995a,b) for homo-
geneous piezoelectric solid, the positive electric loading always leads to increasing MSERR and the negative
electric loading decreasing it. This indicates that the positive electric loading always promotes the extension
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Fig. 7. GM/GM> against I'/I: (a) f = 30°, (b) f = 45°.

of the crack, while the negative electric loading always impedes the extension of the crack. Additionally, in
nearly whole range of /’/1, the value of GM/GM*> increases with increasing /’// and tends to be a constant
value when '/ is large enough. This confirms again that the interface between PZT-5H and PZT-5 actually
has a shielding effect on the crack in PZT-5.

Fig. 8(a) and (b) show the results of the normalized J,/Jy and J,/J, versus /'/l, where

Jo = %KMHKOO K> = \/nl/2[oyy; 075 0; D] (42)
It can be found that the Jj-integral vanishes as predicted by Eq. (41), this indicates that the path-inde-
pendent property of the Jj-integral found in non-piezoelectric bimaterials (Zhao and Chen, 1997) is still
valid in piezoelectric bimaterials. However, due to the effect induced from the interface, the J,-integral does
not vanish, and generally speaking, a large influence of the interface on J,-integral occurs when the distance
I'/1 is decreased.

Let ///1 = 0.25 and 1.0, the values of MSERR against the orientation angle f are illustrated in Fig. 9(a)
and (b), respectively. It is found that when = 90°, i.c. the crack is perpendicular to the interface, whatever
the positive or the negative electric loading takes no effect on the MSERR. Except this special location of
the crack, the positive electric loading always increases the MSERR, while the negative electric loading
always decreases it. This confirms for another time that, in most range of f3, the positive electric loading
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Fig. 8. J1/Jy and J,/J, against I'/I: (a) p = 30°, (b) f§ = 45°.
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Fig. 10. GM/GM> against the electric displacement D5°.

really promotes the extension of the crack, while the negative electric loading impedes it. It is also found
that, with the increasing diversion of f from 90°, the disturbance of the electric loading on the MSERR
tends to be strong, so that five curves diverge farther and farther from each other.

Fig. 10 shows the variation of the MSERR at crack tip 4 for several values of f§ as a function of the
remote electric loading D5°. It is found that the variation tendencies of the MSERR against the electric
loading are linear and the line slope increases with decreasing f. This fully proves that the influence of the
electric loading on the MSERR tends to increase when the crack approaches to the interface.

7. Conclusions

From above investigations and discussions, the following conclusions can be obtained:

(1) The proposed dislocation method is actually effective for solving the near interface crack problem in
piezoelectric bimaterials.
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(2) The remote electric loading takes a great effect on the stability of the near interface crack in piezoelec-
tric bimaterials. Moreover, its influence tends to increase when the crack approaches to the interface.

(3) In the combination of PZT-5H/PZT-5, the interface between PZT-5H and PZT-5 always has a shielding
effect on the crack in PZT-5.

(4) The positive and negative electric loadings play opposite roles on the EDIF, i.e., the positive electric
loading always increases the EDIF, while the negative electric loading always decreases it. Moreover,
whatever the remote electric loading is positive or negative, its increasing value always leads to the in-
crease of EDIF in magnitude.

(5) Generally speaking, the positive electric loading leads to increasing the MSERR and the negative elec-
tric loading decreasing it. This indicates that the positive electric loading generally promotes the exten-
sion of the crack, while the negative electric loading generally impedes the extension of the crack.

(6) The MSERR changes linearly with the variation of the remote electric displacement loading. Moreover,
the MSERR tends to be more sensitive to the modification of electric displacement loading with the
decreasing orientation angle of the crack. It can be predicted that, when the poling direction is perpen-
dicular to the interface, the remote electric displacement loading will bring the largest influence on the
MSERR for a parallel near interface crack, while bring a least influence on the MSERR for a perpen-
dicular one.

(7) The Ji-integral is still path independent in piezoelectric bimaterials though both the stress and electric
fields are taken into account.
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